
Project Number: MA-RYL-0506

A One-Dimensional Viscoelastic Cell Motility Model

A Major Qualifying Project

submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Andrew Port

Jeremy Ristau

April 25, 2007

Approved

Professor Roger Y. Lui
Major Advisor

Abstract

This project attempts to model the length, velocity, and internal stress experienced by a crawl-
ing cell as it moves on a substrate. We assume the cell’s viscoelastic properties can be described
by a Maxwell element. Through balance equations, we develop a Moving Boundary Problem.
We solve this MBP numerically, as well as analyze its traveling wave solution. We then change
our model to assume that the cell’s actin concentration satisfies a second MBP and discuss our
future plans for solving this new, more complicated model.

1

Acknowledgments

We would like to thank Professor Roger Lui of the Mathematical Sciences Department for his
continuous advice and assistance throughout this project. We would also like to thank Kevin
Chu of Princeton University for his ideas and direction.

2

Contents

1 Introduction 6

2 Biological Background 8
2.1 Actin . 9
2.2 Treadmilling . 10
2.3 Myosin II . 11
2.4 Integrin . 11

3 Physical Background 12
3.1 Properties of Materials . 12
3.2 Conservation Laws . 13
3.3 1-D Viscoelastic Models . 13

4 1-D Viscoelastic Model 18
4.1 Derivation of Model Equation . 18
4.2 Change of Coordinates . 20

5 Model One 21
5.1 Assumptions for Material Properties . 21
5.2 Numerical Methods . 24
5.3 Traveling Waves . 27
5.4 The Existence and Uniqueness of a Traveling Wave 30

5.4.1 General Solution of MBP . 30
5.4.2 Lemmas . 31

6 Model Two 36
6.1 Numerical Method . 37
6.2 Traveling Wave . 37

Tables 42

3

List of Figures

2.1 Stages in cell movement[1] . 8
2.2 Actin filaments in different areas of a moving cell[1] 9
2.3 Actin structure at the cell’s leading edge[1] . 10
2.4 A simple graphical representation of treadmilling 11

3.1 A diagram of a Maxwell Element . 14
3.2 A diagram of Kelvin-Voight element . 14
3.3 A diagram of a Standard Linear element . 15
3.4 A diagram of a Standard Solid element . 16

4.1 Changing from a moving domain to a fixed domain. 20

5.1 Elastic Modulus (E) for Model One . 22
5.2 Viscous Drag Coefficient (β) for Model One . 22
5.3 Contractile Stress (τ) for Model One . 23
5.4 Stress (σ) vs. Position (y) for t = 0, 10, 20, 30 time-steps. 26
5.5 Stress (σ) vs. Position (y) for t = 0 to 35 time-steps shown every 5 steps. 26
5.6 Cell Displacement over time. 27
5.7 A graphical depiction of a traveling wave with constant length (L) and velocity

(k). 27
5.8 Model One Traveling Wave Stress (σ) vs. Position (y) 30
5.9 Graphical Representation of the unique intersection of L1 and L2. 35

4

List of Tables

6.1 Time-Dependent Model One Parameters . 42
6.2 Traveling Wave Model One Parameters . 42

5

Chapter 1

Introduction

Understanding the mechanics of cell crawling is necessary for understanding many cellular pro-
cesses, including such natural phenomena as immune responses, wound healing, and cancer cell
metastasis.

One of the most important examples of cell motility is available in our own immune response
to bacterial infection. To fight off invading antigens the immune system increases production of
white blood cells, which travel throughout the body looking for anything foreign. Once found,
the foreign bacteria are actually engulfed by the white blood cells and are broken down using
powerful digestive enzymes.

There can be down sides to cell movement as well. Motility is essential in the formation of new
capillaries during angiogenesis, and during the metastasis of tumor cells. The understanding of
cell motility is an essential part of the fight against many cancers and other such diseases.

Cellular migration is a dynamic process, which requires many internal mechanisms to work in
unison. The motility of many eukaryotic cells can roughly be described as a cycle of protrusion,
adhesion and contraction. A cell moving along a substrate continuously extends in the direc-
tional front due to actin filaments elongating against the plasma membrane in a certain area of
the cell. This ”front” edge of the cell is secured to the substrate by chemical bonds, while the
opposite ”rear” edge breaks previously formed substrate adhesions. Myosin motors attached
to the cell’s cytoskeleton contract to create an internal stress dynamic across the plasma mem-
brane. This causes the newly-freed rear to be pulled in the direction of the front.

To accurately model this process is not an easy task. There are many unknown factors which
must be described and analyzed. Some of these are the cell’s viscoelastic properties, how the
cell determines direction, and how the cell knows where to internally transport needed materials
during locomotion.

Recently, progress has been made in understanding cell motility. Detailed research can now be
found analyzing the cellular mechanics of protrusion, adhesion, and contraction, as well as the
structural characteristics and protein concentrations of migrating cells.

6

One useful application of cell motility research has come from Dr. J.P. Trinkaus on embryonic
development (Browder et al., 1991). During embryonic development cells must move them-
selves to the correct places where they can form tissues and organs. However, cell motility has
been largely studied only in cultured fibroblasts, and few embryonic cells are as amenable to
investigation as cells in culture. Although, the deeply embedded cells of fish blastula are an
exception because the fish embryo is transparent so individual cell behavior can be observed;
and Dr. Trinkaus is one of the leading researchers on the embryonic cells of fish blastula. His
studies have shown that the fibroblast model provides a good approximation of embryonic cell
motility. This lends itself to even more areas of biological research and application that were
before untouchable.

These studies are due in large part to the cooperation of the biological and mathematical science
fields. Advances such as using traction force microscopy to measure cell-substrate traction fields
in fibroblasts and in H-ras transformed NIH 3T3 cells ([3]; Munevar et al., 2001a,b) have made
a higher level of research and analysis possible. This showed that individual fibroblasts display
a complex spatial distribution of traction forces throughout the cell.

An accurate mechanical model that describes the viscoelastic properties of a crawling cell, how-
ever, has yet to be discovered. Several models have been studied and compared with recorded
data. Notably among them include the Kelvin-Voight model [6], the Standard Linear (SL)
model, and the Standar Solid (SS) model (Palsson and Othmer, 2000).

The Kelvin-Voight model is a one-dimensional continuum model of amoeboid cell motility which
represents the cytoplasm’s viscoelastic properties as a spring and dashpot in parallel. Gracheva
and Othmer hypothesized that the active stress generated by molecular motors was controlled
by extracellular signals related to cell-substrate interaction. The model showed a relationship
between cell velocity and cell-substrate interaction consistent with experimental observations [8].

The Standard Linear Solid has been used as a two-dimensional model to approximate the move-
ment of Dd cells. Based on assumptions regarding cell-cell and cell-substrate interactions, the
model accurately predicted much of the behavior observed in two-dimensional Dd slugs, includ-
ing directional change due to external stimulus [6].

This MQP attempts to model in one dimension the stresses inside a fibroblast cell as it moves
along a substrate. We assume the cell is a Maxwell material; that is, we use a Maxwell element
to model the interaction between the cell and the substrate. From this model assumption and
through mass balance laws we develop a Moving Boundary Equation.

7

Chapter 2

Biological Background

As previously mentioned, fibroblast cells crawl on a substrate using three mechanical processes:
protrusion, adhesion and contraction. Actin polymers located in the front of the cell form the
cell membrane into protrusions that push the cell’s leading edge forward. This puts the plasma
membrane under stress. The cell reduces this stress by weakening its adhesion in the rear. It
accomplishes this by controlling the concentrations of certain protein triggers inside the cell.
The weakened adhesion causes the rear of the cell to lose traction and become mobile. The rear
is pulled forward by a collection of stresses. These are the stress along the cell, the contraction
of internal myosin motors, and by a phenomenon called treadmilling. For more in-depth infor-
mation about these cellular properties, we refer the reader to [1].

Figure 2.1: Stages in cell movement[1]

8

2.1 Actin

Actin is a globular protein structure which is found inside the cell as both free monomers float-
ing inside the cell (G-actin), and as polymer structures known as filaments (F-actin). F-Actin is
responsible for the structural integrity of the cytoskeleton, and is constantly being constructed
and broken down. F-actin filaments are found in all eukaryotic cells and are essential for many
of their movements, especially those involving the cell surface. G-actin is used as a building
material for existing actin filaments, and in concentration allows for the easy creation of new
filaments.

To compensate for the drop in concentration of G-actin during filament formation, filaments
are broken down into G-actin at the rear of the cell. This keeps the G-actin concentration at
a suitable level in the cell to allow for locomotion when it is needed. Since most filament con-
struction happens at the front of the cell, and most decomposition happens at the rear, there
is a concentration gradient of actin across the cell.

Figure 2.2: Actin filaments in different areas of a moving cell[1]

Actin filaments react with a variety of actin-binding proteins that allow the filaments to serve
several functions. Depending on the protein, actin filaments can form rigid structures, or -
more importantly to us - they can form temporary structures (e.g. the protrusions found at the
leading edge of a crawling fibroblast).

Actin filaments are polar, having a fast growing ”barbed” end and a slower growing ”pointed”
end. This allows for the two-dimensional expansion of filaments and development of a definable

9

Figure 2.3: Actin structure at the cell’s leading edge[1]

end of a filament’s growth. When the polymerization rate at the ”barbed” end equals the
depolymerization rate at the ”pointed” end, a treadmilling effect can be observed.

2.2 Treadmilling

The cell itself is an elastic solid, so it does not necessarily move uniformly throughout the body.
To accurately describe a cell’s movement and stresses this non-uniformity must be considered.
One explanation of this is known as treadmilling.

Actin filaments in the front of the cell are constantly being lengthened by addition of G-actin,
and this association takes place at a certain rate. Similarly, at the rear of the cell there is a
breakdown of filament with the removal of G-actin, which also occurs at a certain dissociation
rate. Since these are different chemical processes, their rates are not necessarily equal. These
different rates allow for the length of the cell to vary with time.

Figure (2.4) is a simple representation of how treadmilling works. G-actin is removed from the
rear of the cell and flows in the cytoplasm to the front of the cell. There it is added to the end
of an F-actin filament. Fixing one G-actin monomer we can see lateral movement of the cell
body through time.

Note that in cellular movement the rates of growth in the front and rear may not be equal, as
they are in the diagram.

10

Figure 2.4: A simple graphical representation of treadmilling

2.3 Myosin II

Myosin motors are proteins that convert chemical energy into mechanical energy when they
contract. They attach themselves to actin filaments in the cell so that when they contract, the
plasma membrane also contracts.

Myosin II, responsible for skeletal muscle contraction, is perhaps the best-studied of all myosin
proteins. In muscle cells, it is Myosin II that is responsible for producing the contractile force.
Here, the long coiled tails of the individual molecules join together, forming thick filaments
called the sarcomere. The force-producing heads stick out from the side of the thick filament,
ready to move along the adjacent actin-based filaments in response to the proper chemical sig-
nals.

2.4 Integrin

Integrin receptors are transmembrane proteins responsible for the cell’s adhesion to a substrate.
When the cell membrane touches down on a favorable strip of substrate, the integrin located
throughout the membrane adhere to molecules on the strip (e.g. The surface of another cell
over which the moving cell is crawling). Conversely, if the substrate is unfavorable to the cell,
the integrin will not adhere to it. Meanwhile, on the internal face of the membrane integrin
capture actin filaments, creating a robust anchorage for the internal actin structure of the cell.

11

Chapter 3

Physical Background

3.1 Properties of Materials

Stress
Stress (σ) is the internal distribution of force per unit area that balances and reacts to external
loads applied to a body. The simplest definition of stress is

σ =
F

A
(3.1)

where F is the previously mentioned force and A is the cross-sectional area of the body perpen-
dicular to the direction of F .

The SI unit for stress is Pascal (Pa).

Strain
Strain (ε) is the geometrical expression of deformation caused by stress on the cell. Strain
therefore expresses itself as a change in size and/or shape, and is represented as the change in
length with respect to the length at equilibrium.

ε(x, t) =
∂u

∂x
(3.2)

Strain has no units since the units of displacement and position are equal, so they cancel.

Elastic Modulus
Elastic Modulus (also known as Young’s modulus or tensile modulus) is a measure of the stiffness
of a material. For small strains, it is defined as the ratio of stress and strain:

E =
σ

ε
(3.3)

The SI unit of modulus of elasticity is Pascal.

Viscous Drag Coefficient
Viscous drag is a resistant force created by movement across a material. This form of drag is
appropriate for very small objects moving in a fluid at slow speed, which is our situation.

12

Fd = −bv (3.4)

where Fd is the drag force, v is the object’s velocity, and b is a constant that depends on the prop-
erties of the fluid and the dimensions of the object. Since it is a force, the SI unit is Newton (N).

Contractile Stress
We denote τ to be the contractile, or active stress in the interior of the cell. The unit of
contractile stress is Pascal.

3.2 Conservation Laws

Our cell is also governed by some fundamental physical laws that we will use to our advantage.
The Laws of Conservation of Mass and Momentum are two very important properties used in
our model’s construction.

Conservation of Mass
The Law of Conservation of Mass is defined as (Fung, 1994):

Dρ

Dt
+ ρ

∂v

∂x
= 0 (3.5)

where ρ is the cell’s density, and the material derivative is defined as

Dφ

Dt
=
dφ

dt
+
dφ

dx
. (3.6)

Conservation of Momentum
The Law of Conservation of Momentum is mathematically defined as (Fung, 1994):

ρ
Dv

Dt
=
∂σ

∂x
+X (3.7)

where X is the body force per unit volume.

3.3 1-D Viscoelastic Models

A spring is an elastic object used to store mechanical energy. Springs are stiff, meaning they
deform and return to their original position very quickly. Thus, they are said to obey Hooke’s
law:

γS = EηS (3.8)

where γS is the spring’s stress, E is the spring’s modulus of elasticity, and ηS is the spring’s
strain.

13

A dashpot is a device that allows the stress and strain of an element to become time-dependent,
and is analogous to a shock absorber for a car. The stress-strain relationship of the dashpot is
represented by

γD = µ
dηD

dt
(3.9)

where γD is the dashpot’s stress, µ is the dashpot’s viscosity, and ηD is the dashpot’s strain.

The following models use different configurations of a spring and dashpot to represent viscoelas-
ticity. The stiff spring allows for the representation of instantaneous movement. Through the
introduction of a dashpot, they take into account that the relaxation occurs over time.

Maxwell Model
The Maxwell model can be represented by a dashpot and spring connected in series as shown
in Figure 3.1.

Figure 3.1: A diagram of a Maxwell Element

Under an applied axial stress, the total stress, σ, and the total strain, ε, can be defined as
follows:

σ = γD = γS

ε = ηD + ηS
(3.10)

Differentiate (3.10b) with respect to t. Substitute (3.8) and (3.9). Finally use (3.10a) to obtain:

∂ε

∂t
=

1

E

∂σ

∂t
+
σ

µ
(3.11)

Kelvin-Voight Model
The Kelvin-Voight (KV) model can be represented by a dashpot and a spring connected in
parallel, as shown in Figure 3.2.

Figure 3.2: A diagram of Kelvin-Voight element

14

Under an applied axial stress, the total stress, σ, and the total strain, ε, can be defined as
follows:

σ = γD + γS

ε = ηD = ηS
(3.12)

Differentiate (3.12a) with respect to t. Substitute (3.8) and (3.9). Finally use (3.12b) and
re-integrate with respect to t and obtain:

σ = Eε+ µ
∂ε

∂t
(3.13)

Standard Linear Model
The Standard Linear (SL) Model uses a spring connected in parallel with a Maxwell element to
model the behavior of a viscoelastic material, as shown in Figure 3.3.

Figure 3.3: A diagram of a Standard Linear element

The spring is represented by Equation (3.8):

γS1 = E1ηS1 (3.14)

Since this is equivalent to a KV model where the dashpot is a Maxwell element we know that
γM , ηM are the total stress and strain of the Maxwell element represented by

γM = γD = γS2

ηM = ηD + ηS2

(3.15)

and the relationship between them is

∂ηM

∂t
=

1

E2

∂γM

∂t
+
γM

µ
. (3.16)

Under an applied axial stress, the total stress, σ and the total strain, ε can be defined for the
SL model as follows:

σ = γM + γS1

ε = ηM = ηS1 .
(3.17)

Differentiate (3.17b) with respect to t. Substitute (3.16) and (3.14). Now use (3.17a) to obtain:

15

∂ε

∂t
=

1

E2

∂

∂t
(σ − γS1) +

σ − γS1

µ
. (3.18)

Now, substitute (3.14) and (3.17b), then rearrange terms to obtain the stress-strain relationship
for the SL model:

∂ε

∂t
= (1 + E1)

−1

[
∂σ

∂t
+ E2

(
σ − E1ε

µ

)]
. (3.19)

Standard Solid Model
The Standard Solid (SS) Model uses a KV element and a spring connected in series to model
the behavior of a viscoelastic material, as shown in Figure 3.4.

Figure 3.4: A diagram of a Standard Solid element

Since this is equivalent to a Maxwell model where the dashpot is a KV element we know that
γKV , ηKV are the total stress and strain of the KV element represented by

γKV = γD + γS1

ηKV = ηD = ηS1

(3.20)

and the relationship between them is

γKV = E1ηKV + µ
∂ηKV

∂t
. (3.21)

The spring is represented by Equation (3.8):

γS2 = E2ηS2 (3.22)

Under an applied axial stress, the total stress, σ and the total strain, ε can be defined for the
SLS model as follows:

σ = γKV = γS2

ε = ηKV + ηS2

(3.23)

Differentiate (3.23a) with respect to t. Substitute (3.21). Now use (3.23b) to obtain:

σ = E1(ε− ηS2) + µ
∂

∂t
(ε− ηS2) (3.24)

.

16

Now, substitute (3.22) and (3.23a), then rearrange terms to obtain the stress-strain relationship
for the SS model: (

1 +
E1

E2

)
σ +

µ

E2

∂σ

∂t
= E1ε+ µ

∂ε

∂t
. (3.25)

17

Chapter 4

1-D Viscoelastic Model

First, we must mathematically define our model structure. We consider a one-dimensional
viscoelastic cell with length, denoted `(t), in contact with a substrate. We define a spatial
coordinate system relative to the stationary substrate, and denote the position of the cell front
and rear by f(t) and r(t), respectively. Therefore, at any time t the cell can be represented by
the interval r(t) ≤ x′(x, t) ≤ f(t), where x′ is a material point inside the cell at time t ≥ 0. The
displacement u of the cell from its initial position is then defined as

u(x, t) = x− x′(x, t) (4.1)

We use a Maxwell element to describe the viscoelastic properties of our cell. This gives us the
stress-strain relationship from Equation (3.11):

∂ε

∂t
=

1

E

∂γ

∂t
+
γ

µ

where ε is the total strain across the cell, γ is the internal viscoelastic stress created by Maxwell
elements, E is the elastic modulus, and µ is the viscosity.

4.1 Derivation of Model Equation

Since our cell is very small and moves slowly (microns/sec), we can make a justifiable assumption
about the total stress. In general for small organisms moving slowly through fluids, the effect
of inertial forces are negligible compared to that of the viscous drag forces. In other words,
we can assume a low Reynolds number (Berg, 1984). Because of this the material velocity is
independent of time, and Equation (3.7) becomes:

0 =
∂σ

∂x
+X (4.2)

Also, we assume that all external forces (e.g. gravity) acting on the cell are negligible, except
for viscous drag, due to the small size of the cell. We then have that

X = −β∂u
∂t

(4.3)

18

where β is the coefficient of viscous drag. Therefore, Equations (4.2) and (4.3) give us the
following relationship between the stress and the velocity of the cell:

∂σ

∂x
= β

∂u

∂t
(4.4)

Our model for the internal stress of a moving fibroblast takes the form of a Moving Boundary
Problem obtained from our model assumptions and from the Conservation of Momentum. We
define the total stress, σ̂(x, t), as a sum of viscoelastic and contractile stresses.

σ̂(x, t) = γ(x, t) + τ (4.5)

We can substitute Equation (3.2) into the LHS of Equation (3.11), to obtain:

∂ε

∂t
=

∂

∂t

(
∂u

∂x

)
(4.6)

then substitute (4.4) to get a new LHS of Equation (3.11):

∂

∂t

(
∂u

∂x

)
=

∂

∂x

(
1

β

∂σ̂

∂x

)
(4.7)

Substituting (4.5) for γ in (3.11), we obtain the following Moving Boundary Problem to represent
the stress σ̂(x, t) in all time and throughout the cellular body.

∂

∂x

(
1

β

∂σ̂

∂x

)
=

1

E

∂σ̂

∂t
+
σ̂

µ
− τ

µ
(4.8)

In this model σ̂(x, t) is the total internal stress at a time t. Notice that we assume τ to be a
function that is independent of time, and we have E as a non-constant function dependent on
x.

Boundary Conditions
In order to solve this Moving Boundary Problem, we must also impose boundary conditions.

As the rear and the front of the cell advance at different rates, we define the following relations:

dr

dt
= Vd +

∂u

∂t
(r(t), t)

df

dt
= Vp +

∂u

∂t
(f(t), t)

(4.9)

where Vd is the contraction rate of the rear and Vp is the protrusion rate of the front.

We also assume the biological boundary conditions, σ̂(r, t) = σ̂(f, t) = 0.

19

4.2 Change of Coordinates

In order to solve our Moving Boundary Problem, we must map the moving domain
{(x, t) : r(t) ≤ x ≤ f(t), t ≥ 0} onto a fixed one by a change of variable. Figure 4.1 is a graphical
representation of our change of coordinates.

Figure 4.1: Changing from a moving domain to a fixed domain.

Let y(x, t) =
x− r(t)

`(t)
where `(t) = f(t) − r(t). Define σ(y, t) = σ̂(x, t). The chain rule then

yields the following: 

∂σ̂

∂x
=

1

`(t)

∂σ

∂y
,

∂σ̂

∂t
=

∂y

∂t

∂σ

∂y
+
∂σ

∂t

(4.10)

To simplify notation, let β̄ =
1

β
. Substituting in (4.10), Equation (4.8) becomes

∂σ

∂t
+
∂y

∂t

∂σ

∂y
= E

[
1

`(t)

∂β̄

∂y

∂σ

∂y
+

β̄

`2(t)

∂2σ

∂y2
− σ

µ
+
τ

µ

]
. (4.11)

The boundaries (Equations (4.9)) are mapped in the same manner, and using (4.4), we have

dr

dt
=

(
Vd +

β̄

`(t)

∂σ

∂y

)
y=0

df

dt
=

(
Vp +

β̄

`(t)

∂σ

∂y

)
y=1

(4.12)

20

Chapter 5

Model One

As found in the previous chapter, we have a way of describing the stress in our cell mapped
onto a fixed domain by the Moving Boundary Problem with boundary conditions:

∂σ

∂t
+
∂y

∂t

∂σ

∂y
= E

[
1

`(t)

∂β̄

∂y

∂σ

∂y
+

β̄

`2(t)

∂2σ

∂y2
− σ

µ
+
τ

µ

]

dr

dt
=

(
Vd +

β̄

`(t)

∂σ

∂y

)
y=0

df

dt
=

(
Vp +

β̄

`(t)

∂σ

∂y

)
y=1

σ(0, t) = 0 , σ(1, t) = 0

(5.1)

We have two different numerical methods to solve (5.1), one explicit and one implicit. The
comparison of results between these two methods allows us to more easily detect approximation
error. First we must make some assumptions of our functions. We must note that many of the
assumptions we make are taken from [6] and [7].

5.1 Assumptions for Material Properties

Actin
We assume that the concentration of actin across the cell is a linear function defined as

a(y) = y (5.2)

Elastic Modulus
We assume the elastic modulus to be defined as

E(y) = E0a(y) (5.3)

Figure (5.1) is a graphical description of our assumption for E.

21

Figure 5.1: Elastic Modulus (E) for Model One

Viscous Drag Coefficient
We assume that the cell’s viscous drag coefficient, β, is proportional to the density of the integrin
receptors bound to the substrate, nb.

β(y) = β0nb(y) (5.4)

Figure (5.2) is a graphical description of our assumption for β.

Figure 5.2: Viscous Drag Coefficient (β) for Model One

We assume that the density of integrin receptors bound to the substrate is proportional to the
concentration of substrate ligands, ns, and free (unbound) integrin receptors, nf .

We keep the association rate, kf , as well as the dissociation rate, kr0, constant throughout the
cell. Since the integrin-substrate bonds are chemically weakened in the rear of the cell we define
a unitless position function

22

f1(y) = ψ1 + (1− ψ1)y (5.5)

which linearly increases toward the rear. To simplify our notation, we denote κs =
kfns

kr0

. So we

obtain a function for the bound integrin with respect to cell position:

nb(y) =
κs

f1(y)
nf (y) (5.6)

where nf (y) + nb(y) = NTotal, and NTotal is a constant total number of integrin in the cell.

Contractile Stress
We define the cell’s contractile stress, τ to be proportional to the concentration of bound active
Myosin II.

τ(y) = τ0m
+
b (y) (5.7)

Figure (5.3) is a graphical description of our assumption for τ .

Figure 5.3: Contractile Stress (τ) for Model One

In this equation m+
b is the density of active Myosin II bound to actin, and τ0 is the mean

magnitude of stress produced by each motor. The equation for active bound myosin is

m+
b (y) =

k+
Reg

f2(y)k
−
Reg

[Reg]mb(y) (5.8)

where f2(y), similarly to Equation (5.5), is defined below as

f2(y) = ψ2 + (1− ψ2)y. (5.9)

The density of bound myosin is the ratio of myosin association (k+
m) and dissociation (k−m) rates

multiplied by the concentration of free myosin (mf (y)) and actin,

mb(y) =
k+

m

k−m
mf (y)a(y) (5.10)

23

where mf (y) +mb(y) = MTotal, and MTotal is a constant total number of myosin in the cell.

5.2 Numerical Methods

We cannot solve this Moving Boundary Problem analytically, but in this section, we develop
methods to solve it numerically.

Explicit Method
To obtain an explicit equation for σ(y, t + ∆t) we must discretize Equation (5.1) with respect
to the current time t and then solve for σ(y, t + ∆t) algebraically. To help ease notation, we
define t0 = t and t1 = t+ ∆t. We use a central difference method to approximate derivatives.

Isolating
∂σ

∂t
, Equation (5.1a) discretizes into

σ(yi, t1)− σ(yi, t0)

∆t
= E(yi, t0)

[
1

`(t0)

∂β̄(yi, t0)

∂y

σ(yi+1, t0)− σ(yi−1, t0)

2∆y

+
β̄(yi, t0)

`2(t0)

σ(yi+1, t0) + σ(yi−1, t0)− 2σ(yi, t0)

∆y2

− σ(yi, t0)

µ
+
τ(yi, t0)

µ

]
− ∂y

∂t

σ(yi+1, t0)− σ(yi−1, t0)

2∆y

≡ F (yi+1, yi, yi−1, t0) .

(5.11)

We then solve for σ(yi, t1) to obtain the explicit equation:

σ(yi, t1) = ∆t F (yi+1, yi, yi−1) + σ(yi, t0) . (5.12)

We use an explicit method to find the front and rear positions at the next timestep. First, we
discretize Equations (5.1b) and (5.1c), and then solve for the desired positions.

We discretize to obtain an approximation for the rear at a time t1.

r(t1) = r(t0) + ∆t

(
Vd +

β̄(0)

`(t0)

σ(∆y, t0)

∆y

)
(5.13)

Similarly, we do this for the front of the cell, but we know the cell increases in length, due to
actin protrusions pushing out the leading edge, until the cell’s motion reaches a steady state,

so we let Vp =
V0L0

`(t0)
.

f(t1) = f(t0) + ∆t

(
V0L0

`(t0)
− β̄(1)

`(t0)

σ(1−∆y, t0)

∆y

)
(5.14)

24

Note that a sign in f(t1) has changed, due to the fact that σ(f(t0)) = 0.

Implicit Method
Let us now take Equation (5.1a) and discretize it with respect to a future timestep t1. This
will be similar to Equation (5.11), however the σ times t0 and t1 will be interchanged with one
another. For the sake of notation, we rewrite Equation (5.11) in terms of coefficients of σ.

Ai,i−1σ(yi−1, t1) + Ai,iσ(yi, t1) + Ai,i+1σ(yi+1, t1) = b (5.15)

where the coefficients are:

Ai,i−1 =
−1

2E∆y

∂y

∂t
+

1

2`(t0)∆y

∂β̄

∂y
− β̄

`(t0)2∆y2

Ai,i =
1

µ
+

2β̄

`(t0)2∆y2
+

1

E∆t0

Ai,i+1 =
1

2E∆y

∂y

∂t
− 1

2`(t0)∆y

∂β̄

∂y
− β̄

`(t0)2∆y2

bi = −σ(yi, t0)

E∆t
+
τ

µ

(5.16)

Note that in all coefficients, the functions expressed in them are at (yi, t0) regardless of what
y-step the corresponding σ value is. We then transform these equations into matrix notation so
that:


...
bi
...

 =



A1,1 A1,2 0 . . . 0

A2,1
.

...

0
. 0

...
. An−1,n

0 . . . 0 An,n−1 An,n




...

σ(yi, t1)
...



where Ai,i−1, Ai,i, Ai,i+1, bi represent the coefficients of σ(yi, t1). We then solve this matrix using
Gaussian Elimination to obtain σ(y, t1).

The boundaries for the implicit method are calculated the same way as the explicit method.
See Equations (5.13) and (5.14).

Numerical Results
We divided the cell interior into 100 discrete equidistant points. Taking the front and rear

25

into consideration, we obtain 101 sections each having length ∆y = 1
101

. To ensure numerical
convergence to the PDE solution we define a timestep ∆t = 1

2
∆y2 to be small enough to avoid

compounding approximation error.

We ran the explicit method to the computational limit available to us and were unable to reach
a steady state. This reason, and the lack of accuracy in the explicit method, drove us to not
use this method in Model Two’s development.

We ran the implicit method with several different initial stress values until there was a relative
σ difference between timesteps smaller than 10−10. Our results for Model One’s Steady state
solution found from a parabolic σ0, found implicitly are displayed in Figure 5.4.

Figure 5.4: Stress (σ) vs. Position (y) for t = 0, 10, 20, 30 time-steps.

Note, t = 30 is the steady-state solution.

Model One’s Steady state solution found from a sinusoidal σ0, found implicitly is shown in
Figure (5.5) to make sure our model converged to the same solution with very different initial
conditions.

Figure 5.5: Stress (σ) vs. Position (y) for t = 0 to 35 time-steps shown every 5 steps.

Note, t = 35 is the steady-state solution. After trying multiple possible initial conditions, we

26

concluded our steady-state to be accurate. Varying the ∆t and initial condition slightly made
little difference for either accuracy or speed of convergence.

Here is a graph of the cell’s displacement (u(x, t)) versus time (t). Notice the cell reaches a
steady-state in reasonable time, and from this we can find the cell’s steady-state velocity and
length.

Figure 5.6: Cell Displacement over time.

5.3 Traveling Waves

Our numerical results led us to believe that our MBP could have traveling wave solutions. In
order to verify this, we solve a traveling wave problem assuming cell length and speed, denoted
L and k, to be constant.

Theoretically, this represents the cell when it has reached a correct steady state solution, be-
cause by definition these two values should remain constant. After our traveling wave problem
is solved we can then compare the k, L, and σ patterns we get with the values we obtained from
our previous time-dependent model.

Figure 5.7: A graphical depiction of a traveling wave with constant length (L) and velocity (k).

27

Due to these assumptions, the paths of the front and rear of the cell become parallel to each
other in time, and the stress will remain constant for all time since it is a steady state equation.
This makes x and t no longer independent and we can change the coordinate system to one
variable, θ, simplifying our model down from a partial to an ordinary differential equation.

Note that in order to have a traveling wave solution we must assume E, β, τ to be constant
functions. Let θ = x − kt and σw(θ) = σ(x − kt). We also assume that r(t) = kt and
f(t) = kt + L. Thus, r, L, and σw are unknowns in the problem. By the chain rule we then
obtain 

∂σ

∂x
=

dσw

dθ
= σ′w(θ)

∂σ

∂t
= −kdσw

dθ
= −kσ′w(θ)

(5.17)

We can now obtain a second order, linear ODE with constant coefficients. By substituting
(5.17) into Equation (5.1) we obtain

σ′′w = β

(
−k
E
σ′w +

σw − τ

µ

)

k = Vd + β̄σ′w(0)

k =
V0L0

L
+ β̄σ′w(L)

σw(0) = 0 , σw(L) = 0

(5.18)

Scaling
We can now scale Equation (5.1) by defining the following:

θ̄ = βθ, σ̄ =
σ

E
, τ̄ =

τ

E
, k̄ =

k

E
, L̄ = βL

µ̄ = βµ, L̄0 =
V0βL0

E
, V̄d =

Vd

E

(5.19)

This makes Equation (5.18) become

σ̄′′w = −k̄σ̄′w +
σ̄w − τ̄

µ̄

k̄ = V̄d + σ̄′w(0)

k̄ =
L̄0

L̄
+ σ̄′w(L̄)

σ̄w(0) = 0 , σ̄w(L) = 0

(5.20)

28

In order to solve for k̄ and L̄ we can use the fact that now
dr

dt
=
df

dt
= k. We can then use the

boundary equations (5.1b,c) from our time-dependent model to generate explicit equations for
k̄ and L̄. The equation for the rear boundary gives us

k̄ = V̄d + σ̄′w(0) (5.21)

where all variables are now known except k̄, so we have an explicit equation for the cell’s speed.
Next, we look at the equation for the front of the cell, which yields

k̄ =
L̄0

L̄
+ σ̄′w(L̄) . (5.22)

Substituting this into equation (5.21), we can solve for L̄ to obtain an explicit equation for the
cell’s length.

L̄ = L̄0

[(
V̄d + σ̄′w(0)

)
− σ̄′w(L̄)

]−1
(5.23)

Numerical Method
We can now solve this traveling wave problem using the same implicit method used for our
time-dependent model. We approximate the first and second derivatives in the same way and
we use the same process as before to obtain an equation in implicit form. Our model can thus
be approximated by the following equation:

Ai,i−1σ̄w(θ̄ −∆θ) + Ai,iσ̄w(θ̄) + Ai,i+1σ̄w(θ̄ + ∆θ) = bi (5.24)

where

Ai,i−1 =
1

∆θ2
− k̄

2a∆θ

Ai,i = − 2

∆θ2
− 1

µ̄

Ai,i+1 =
1

∆θ2
+

k̄

2a∆θ

bi = − τ̄
µ̄

(5.25)

We can then form a tri-diagonal matrix M from the coefficients A and b. We then use Gaussian
Elimination to solve for σ̄w(θi) using the equation Mσ̄w = D. Then we can obtain values for k̄
and L̄, and finally rescale them back to k and L.

Numerical Results
Our method reached a solution within 10 iterations. Figure 5.7 shows the graph of σ vs. y.
We can obtain k, L values from this solution, and unscale them to compare them with the
time-dependent steady-state velocity and length. These are the unscaled values:

29

Figure 5.8: Model One Traveling Wave Stress (σ) vs. Position (y)

k = 0.146818 µm · s−1

L = 0.518326 µm
(5.26)

This matches the length, velocity and stress of the time-dependent model’s steady-state when
setting the functional coefficients to be constants (see Table 6.2).

5.4 The Existence and Uniqueness of a Traveling Wave

Theoretically, there exists a solution to this Traveling Wave, and the solution is unique. A proof
of the existence and uniqueness of this Traveling Wave solution is now presented, developed by
us and our advisor, Professor Roger Lui.

We begin with the scaled moving boundary problem (MBP)

d2σ

dθ2
+ k

dσ

dθ
− σ

µ
= −τ

µ

σ(0) = 0, σ(L) = 0

k = Vd +
dσ

dθ
0 , k =

L0

L
+
dσ

dθ
L

(5.27)

5.4.1 General Solution of MBP

We can now get a general solution to this ODE easily by summing a particular solution and the
homogenous solution. We obtain the following general solution to the ODE:

σ(θ) = C̄1e
α1θ + C̄2e

α2θ + τ (5.28)

30

where α1, α2 are roots of the equation ξ2 + k ξ − 1
µ

= 0, i.e.

α1 = −k
2

+
1

2

√
k2 +

4

µ

α2 = −k
2
− 1

2

√
k2 +

4

µ
.

Now we use the facts that

σ(0) = C̄1 + C̄2 + τ = 0

σ′(θ) = C̄1α1e
α1θ + C̄2α2e

α2θ

σ′(0) = C̄1α1 + C̄2α2 = k − Vd

to obtain

(
1 1
α1 α2

) (
C̄1

C̄2

)
=

(
−τ

k − Vd

)
which implies that

C̄1 =
α2τ + k − Vd

α1 − α2

C̄2 =
−α1τ − k + Vd

α1 − α2

.

Note that α1 > 0 > α2 for all k ≥ 0.

5.4.2 Lemmas

Lemma 1

σ does not have a negative minimum on 0 ≤ θ ≤ L.

Proof:

Apply Maximum Principle. Observe that if σ has a negative minimum, then
d2σ

dθ2
> 0, k

dσ

dθ
= 0,

and
σ

µ
> 0 so their sum must be positive. However, −τ

µ
< 0. This gives a contradiction, and

we are done.

Lemma 2

31

σ > 0 on (0, L), σ′(0) > 0 and σ′(L) < 0.

Proof:
This follows from Lemma 1.

Corollary

For Traveling Wave solutions, k > Vd.

Proof:
By lemma 2, we have k − Vd = σ′(0) > 0. Therefore, k > Vd.

Lemma 3

C̄1 < 0.

Proof:
If not, σ(θ) →∞ as θ →∞. Since σ(L) = 0, then it forces a negative minimum. This contra-
dicts Lemma 1 and we are done.

From the definitions of α1 and α2 above, we have

dα1

dk
= −1

2
+

1

2
k

(
k2 +

4

µ

)−1/2

=
−α1

α1 − α2

< 0

dα2

dk
= −1

2
− 1

2
k

(
k2 +

4

µ

)−1/2

=
α2

α1 − α2

< 0 .

Now using the facts that σ(L) = 0 and σ′(L) = k − L0/L, we have

(
1 1
α1 α2

) (
C̄1e

α1L

C̄2e
α2L

)
=

(
−τ

k − L0

L

)
⇒

(
C̄1e

α1L

C̄2e
α2L

)
=

1

α1 − α2

(
α2τ + k − L0

L

−α1τ − k + L0

L

)

Rearranging, we have



eα1L +
L0

C̄1(α1 − α2)L
=

α2τ + k

C̄1(α1 − α2)
(1)

eα2L − L0

C̄2(α1 − α2)L
=

−α1τ − k

C̄2(α1 − α2)
(2)

which we label (1) and (2) respectively.

Lemma 4

32

Given k > Vd, there exists a unique solution to (1) and (2), called L1(k), L2(k) respectively.

Proof:
Since C̄1 < 0, C̄2 < 0 and α1 > 0 > α2, the left hand side of (1) increases from −∞ to ∞ as L
increases on (0, L). Similarly, the left hand side of (2) decreases from ∞ to 0 on (0,∞). Note
that the right hand side of (2) is positive. The proof of the lemma is complete.

Lemma 5

Let τ ≤ 1, then
dL1

dk
> 0 and

dL2

dk
< 0.

Proof:
Let ξ = C̄1(α1 − α2) = α2τ + (k − Vd) < 0. Then Equation (1) may be rewritten as

ξeα1L +
L0

L
= α2τ + k = ξ + Vd.

Differentiating with respect to k, we have

ξ′eα1L + ξ(α1L)′eα1L − L0

L2
L′ = ξ′.

Rearranging, we have

ξ′ + ξ(α′
1L+ α1L

′)− L0

L2
L′ = ξ′e−α1L.

Thus,

L′ =
ξ′(e−α1L − 1)− ξα′

1L

α1ξ − L0

L2 e−α1L
.

Since C̄1 < 0, we have ξ < 0 and from above, α′
1 < 0. Now

ξ′ = α′
2τ + 1 =

α2τ

α1 − α2

+ 1 =
(τ − 1)α2 + α1

α1 − α2

> 0.

Therefore, L′ is the ratio of two negative quantities and is positive.

To show that L′
2(k) < 0, let η = C̄2(α1 − α2) = −α1τ − k + Vd. Then Equation (2) may be

rewritten as

ηeα2L − L0

L
= −α1τ − k = η − Vd.

Differentiating with respect to k, we have

η′eα2L + η(α2L)′eα2L +
L0

L2
L′ = η′

33

which as before yields

L′ =
η′(e−α2L − 1)− ηα′

2L

ηα2 + L0

L2 e−α2L
.

Now

η′ = −α′
1τ − 1 =

α1

α1 − α2

τ − 1 =
α1τ − α1 + α2

α1 − α2

< 0

if τ ≤ 1. Also, since η < 0, α′
2 < 0 and α2 < 0, the numerator of L′ is negative while its

denominator is positive. Therefore, L′
2 < 0. The proof of the lemma is complete

Lemma 6

L1(Vd) < L2(Vd) .

Proof:
Set k = Vd in equations (1) and (2). Then C̄1(α1 − α2) = α2τ , α1 + α2 = −k = −Vd, so
α2 = −(α1 + Vd). Then equations (1) and (2) above become



eα1L +
1

α2τ
(
L0

L
− Vd) = 1

eα2L +
1

α1τ
(
L0

L
− Vd) = 1 .

Let η = −α2

α1

=
α1 + Vd

α1

> 0, so α2 = −α1η. Therefore,



eα1L1 − 1

α1ητ
(
L0

L1

− Vd) = 1

e−α1ηL2 +
1

α1τ
(
L0

L2

− Vd) = 1 .

Suppose (i) is not true. Then, L2(Vd) ≤ L1(Vd), and 1− e−α1ηL2 > η(eα1L1 − 1).

If L2 ≤ L1, we have 1− e−α1ηL2 ≤ 1− eα1ηL1 . Hence, we have
1− e−α1ηL1

η
> eα1L1 − 1.

Consider two functions

f(u) =
1− e−ηu

η

g(u) = eu − 1

34

where η > 0 and u ≥ 0. Note that f(0) = g(0) = 0. Also

f ′(u) = e−ηu < 1

g′(u) = eu > 1

Therefore f ′(u) ≤ g′(u), and f(u) < g(u) for all u > 0, in particular when u = α1L1 which is a
contradiction. The proof of the lemma is complete.

Figure 5.9: Graphical Representation of the unique intersection of L1 and L2.

35

Chapter 6

Model Two

In this model, we improve upon Model One by removing the assumption that actin is a linear
function. We replace it by Equation (6.1):

∂â

∂t
= − ∂

∂x
(vâ)− Γâ (6.1)

with boundary condition a(f(t), t) = aL. By definition, v =
∂u

∂t
. Therefore, we can substitute

for v using Equation (4.4), and move all terms to one side to obtain the new equation:

∂â

∂t
+

∂

∂x

(
â

β

∂σ̂

∂x

)
+ Γâ = 0

a(f(t), t) = aL

(6.2)

We change coordinates for (6.2) using (4.10), and defining a(y, t) = â(x, t) where

∂â

∂x
=

1

`(t)

∂a

∂y

∂â

∂t
=

∂y

∂t

∂a

∂y
+
∂a

∂t

(6.3)

Using the same boundary conditions as for Model One, this gives us Model Two:

36



∂σ

∂t
+
∂y

∂t

∂σ

∂y
= E0

[
1

`(t)

∂β̄

∂y

∂σ

∂y
+

β̄

`2(t)

∂2σ

∂y2
− σ

µ
+
τ

µ

]

0 =
∂a

∂t
+

[
∂y

∂t
+

β̄

`(t)2

∂σ

∂y

]
∂a

∂y
+

[
Γ +

β̄

`(t)2

∂2σ

∂y2

]
a

dr

dt
=

(
Vd +

β̄

`(t)

∂σ

∂y

)
y=0

df

dt
=

(
Vp +

β̄

`(t)

∂σ

∂y

)
y=1

σ(0, t) = 0 , σ(1, t) = 0 , a(1, t) = 1

(6.4)

Note that we can scale out aL by first setting ā =
a

aL

, then setting Ē0 = E0aL. Dropping the

bar notation, this will leave us with the same equations for E and a, but with the new boundary
condition a(1, t) = 1.

Note that while our definition of a has changed, E, β and τ remain as defined in Model One.

6.1 Numerical Method

We are currently developing a numerical method to solve Model Two using the Upwind Method
and a similar implicit scheme as the one used for Model One.

6.2 Traveling Wave

We approach this traveling wave the same way we did in Model One (Section (5.3)). Again take
θ = x− kt and σw(θ) = σ(x− kt), aw(θ) = a(x− kt). We let β, τ be constant functions, and we
let E = E0a. Therefore, Equation (6.4) becomes

σ′′w = β

(
σw − τ

µ
− kσ′w
E0a

)

0 = −ka′w + Γaw

k = Vd + β̄σ′w(0)

k =
V0L0

L
+ β̄σ′w(L)

σw(0) = 0 , σw(L) = 0 , aw(L) = 1

(6.5)

37

Now we can scale these equations using Equation (5.19), replacing E with E0. In addition we
must scale our new equation for a, so we define

Γ̄ =
Γ

E0β
. (6.6)

Our equation for a becomes

a′ − Γ̄ + σ̄′′

k̄ − σ̄′
a = 0 (6.7)

with boundary condition a(L) = 1. Since this equation is a first-order linear ODE we can solve
for a explicitly to have

a(θ) = e
−
∫ L

θ

Γ̄ + σ̄′′

k̄ − σ̄′
dθ

=

[
L̄0

L̄(k̄ − σ̄′)

]
e
−Γ̄

∫ L̄

θ

dθ

k̄ − σ̄′ (6.8)

We can now take this and solve the stress-strain equation with a as a known function.

Numerical Method for Finding σ̄
We can find the values of k̄ and L̄ the same way as in Model One. We can then use an implicit
method to numerically solve for σ̄. First we must discretize Equation (6.4a).

Ai,i−1σ̄(θi−1) + Ai,iσ̄(θi) + Ai,i+1σ̄(θi+1) = b (6.9)

where the coefficients are:

Ai,i−1 =
1

∆θ2
− k̄

2a∆θ

Ai,i = − 2

∆θ2
− 1

µ̄

Ai,i+1 =
1

∆θ2
+

k̄

2a∆θ

bi = − τ̄
µ̄

(6.10)

Note that in all coefficients, the functions expressed in them are at θi regardless of what θ-step
the corresponding σ̄ value is. We then transform these equations into matrix notation so that:

38


...
bi
...

 =



A1,1 A1,2 0 . . . 0

A2,1
.

...

0
. 0

...
. An−1,n

0 . . . 0 An,n−1 An,n




...

σ̄(θi)
...



We can then solve this linear system using Gaussian Elimination to obtain σ̄(θ).

A proof of the existence and uniqueness of this Traveling Wave solution is currently being
researched by Professor Roger Lui.

39

Bibliography

[1] Alberts, Bruce, [et al.]

Essential Cell Biology 2nd edition

Garland Science, 2003.

[2] Berg, Howard C.

Random Walks in Biology Rev. edition

Princeton University Press, 1984.

[3] Dembo, Micah and Yu-Li Wang

Stresses at the Cell-to-Substrate Interface during Locomotion of Fibroblasts,

Biophysical Journal, 1999, 76, pp. 2307-2316.

[4] Dembo, Micah, Chun-Min Lo, Hong-Bei Wang, and Yu-Li Wang

Cell Movement Is Guided by the Rigidity of the Substrate,

Biophysical Journal, 2000, 79, pp. 144-152.

[5] Fung, Y. C.

First Course in Continuum Mechanics 3rd edition,

Prentice Hall, 1994.

[6] Gracheva, Maria and Hans G. Othmer

A Continuum Model of Motility in Ameboid Cells,

Bulletin of Mathematical Biology, 2004, 66, pp. 167-193.

[7] Larippa, Kamila and Alex Mogilner

Transport of a 1D Viscoelastic Actin-Myosin Strip of gel as a Model of a Crawling Cell

2006, Physica A, 372, pp. 113-123.

[8] Palecek, S. P., J. C. Loftus, M. H. Ginsberg, D. A. Lauffenburger and A. F. Horwitz.

Integrin ligand binding properties govern cell migration speed through cellsubstratum adhe-
siveness.

1997, Nature 385, pp. 537-540.

40

[9] ”Actin.” Wikipedia, The Free Encyclopedia.

6 Jan 2007, 01:16 UTC. Wikimedia Foundation, Inc.

<http://en.wikipedia.org/w/index.php?title=Actin&oldid=98774354>.

[10] ”Myosin.” Wikipedia, The Free Encyclopedia.

22 Nov 2006, 05:24 UTC. Wikimedia Foundation, Inc.

<http://en.wikipedia.org/w/index.php?title=Myosin&oldid=89390077>.

41

Tables

Below are the constants and parameters used in our project.

Table 6.1: Time-Dependent Model One Parameters
Parameter Definition Value
E0 Cell elastic constant 0.42 Pa
L0 Initial celllLength 1 µm
MTotal Total Myosin II 20.0 µM
NTotal Total integrin 105 receptors/cell
V0 Initial protrusion rate of the front 0.1 µm · s−1

Vd Contraction rate of the rear 0.1 µm · s−1

κ+
m/κ

−
m Association/dissociation rate ratio 0.3

κ+
Reg[Reg]0/κ

−
Reg Association/dissociation rate ratio 0.1

β0 Drag constant 0.05 Pa · s · cell/µm2 · receptors
µ Cell viscosity 2.0×10−3 Pa · s
τ0 Active stress constant 4.2×10−8 Pa · µm3

ψ1 Myosin II dissociation assymetry 3.33
ψ2 Myosin II activation asymmetry 10.0

Table 6.2: Traveling Wave Model One Parameters
Parameter Definition Scaled Value Unscaled Value
E Elastic Modulus - 0.21 Pa
Vd Contraction rate of the rear 0.4762 Pa/µm2 0.1 µm · s−1

β Viscous drag coefficient - 0.2588 Pa · s/µm2

µ Cell viscosity 5×10−4 (Pa · s/µm)2 2.0×10−3 Pa · s
τ Contractile stress 5.137×10−3 1.0787×10−3 Pa

42

Time-Dependent Model One
Driver - driverfcn.m

tic
% Input Parameters
global ysteps
global tsteps
global sig0
global sig1
global rear0
global front0
global rear1
global front1

SetConstants()

fid1 = fopen(’SigmaVals.txt’,’wt’);
fid2 = fopen(’Boundaries.txt’,’wt’);

for t = 1:tsteps

%% Printing
fprintf(fid2,’%12.12f %12.12f\n’,rear0,front0);
for j = 1:ysteps

fprintf(fid1,’%12.12f ’,sig0(j));
end
fprintf(fid1,’\n’);

%% Calculation
%FindSigmaE()
FindSigmaI()

%% ticker
if and(t~=tsteps,ceil(10*t/tsteps)==10*t/tsteps)

p = round(t/tsteps *100);
fprintf(’%d %% done, %d / %d steps It time: %d \n’,p,t,tsteps,toc)
tic

end

%% Updating values
sig0 = sig1;
rear0 = rear1;
front0 = front1;

end

fclose(fid1);
fclose(fid2);

Setting Function Constants - SetConstants.m

43

function SetConstants = SetConstants()

Constants = textread(’constants.txt’,’%f’,’commentstyle’,’matlab’);
% constants for beta
global beta0
global N_total
global psi1
global f0
global k_s
beta0 = Constants(1);
k_f = Constants(2);
k_r0 = Constants(3);
n_s = Constants(4);
N_total = Constants(5);
psi1 = Constants(6);
f0 = Constants(7);
k_s = k_f * n_s / k_r0;

% constants for elast
global elast0
elast0 = Constants(8);

% constants for FindSigma
global Mu0
Mu0 = Constants(9);

% constants for tau
global alph
global k_mneg
global k_mpos
global k_regneg
global k_regpos
global M_total
global n_b0
global psi2
global Reg0
global tau0
alph = Constants(10);
k_mneg = Constants(11);
k_mpos = Constants(12);
k_regneg = Constants(13);
k_regpos = Constants(14);
M_total = Constants(15);
n_b0 = Constants(16);
psi2 = Constants(17);
Reg0 = Constants(18);
tau0 = Constants(19);

44

% constants for driverfcn
global L0
global ysteps
global tsteps
global dy
global dt
global rear0
global front0
global Vd
global V0
global y
global sig0
L0 = 1;
ysteps = 200;
tsteps = 5000;
dy = 1/(ysteps + 1);
dt = dy; %Implicit CFL condition
%dt = .5*dy^2; %Explicit Condition
rear0 = 0;
front0 = L0;
Vd = 0.1;
V0 = 0.1;

% Defining Initial Conditions
i = 1:ysteps;
y = i*dy;

for i = 1:ysteps
% initial stress is parabola concave down, vanishes at 0 and L0.
%sig0(i) = ((L0/2)^2 - (y(i) - L0/2)^2)/100;
sig0(i) = sin(pi*y(i)/(.5*L0));

end

Text file of Constants - constants.txt

0.05 % beta0 (dyn*s/um^3)
0.0001 % k_f **with n_s, k_r0 (ks)
1 % k_r0 **with n_s, k_f
1 % n_s **with k_f, k_r0
100000 % N_total //
3.33 % psi1 (unitless)
.75 % f0

0.42 % elast0 (dyn/um)

0.002 % Mu0 (dyn*s/um)

45

2 % alph
1 % k_mneg **with k_mpos
0.3 % k_mpos **with k_mneg
1 % k_regneg **with kreg_pos, Reg
1 % k_regpos **with kreg_neg, Reg
50000 % n_b0 (not from papers)
20.0 % M_total (uM) //input
10.0 % psi2 (unitless)
0.1 % Reg0 (unitless) **with k_regneg, k_regpos
0.000000042 % tau0 (dyn/um)

Explicit Method - FindSigmaE.m

global dy
global dt
global ysteps
global sig0
global sig1
global front0
global rear0
global front1
global rear1
global Mu0
global y
global beta0
global N_total
global k_s
global psi1

sigiAtCB = interpsig();
L = front0 - rear0;
Vp = V0*L0/L;
dR = dt*(Vd + betastar(0,0)*sigiAtCB(1)/(L*dy));
dF = dt*(Vp - betastar(1,0)*sigiAtCB(2)/(L*dy));

g = -dR/L - (dF - dR)*y/L;
dbetastardy = (1-psi1)/(k_s*N_total*beta0*L);
rear1 = rear0 + dR;
front1 = front0 + dF;

for i = 1:ysteps
if i == 1

dsigmahatdy = sig0(1)*dy;
d2sigmahatdy2 = sig0(2) - 2*sig0(1);

end
if and(i >= 2, i <= ysteps-1)

dsigmahatdy = .5*dy*(sig0(i+1) - sig0(i-1));
d2sigmahatdy2 = sig0(i+1) - 2*sig0(i) + sig0(i-1);

46

end
if i == ysteps

dsigmahatdy = -sig0(ysteps)*dy;
d2sigmahatdy2 = -2*sig0(ysteps) + sig0(ysteps-1);

end
tmp1 = elasthat(y(i),0)*dt*dbetastardy/L - g(i)*dt;
tmp2 = elasthat(y(i),0)*dt*betastar(y(i),0)/L^2;
tmp3 = 1 - elasthat(y(i),0)*dt/Mu0;
tmp4 = -elasthat(y(i),0)*dt*tauhat(y(i),0)/Mu0;

sig1(i) = tmp1*dsigmahatdy + tmp2*d2sigmahatdy2 + tmp3*sig0(i) + tmp4;
end

Implicit Method - FindSigmaI.m

global ysteps
global L0
global dy
global dt
global sig0
global sig1
global rear0
global front0
global rear1
global front1
global V0
global Vd
global Mu0
global y
global beta0
global N_total
global k_s
global psi1
global L

L = front0 - rear0;
Vp = V0*L0/L;
dR = dt*(Vd + sig0(1)/(L*dy*beta(0)));
dF = dt*(Vp - sig0(ysteps)/(L*dy*beta(L)));

rear1 = rear0 + dR;
front1 = front0 + dF;
L = front1 - rear1;

Vp1 = V0*L0/L;
dF = dF - dt*(Vp - Vp1);

g = -(dR + (dF - dR)*y)/L; %g = dy/dt = [(x-r)/L]’

47

dB1dy = (1-psi1)/(k_s*N_total*beta0*L);

A = zeros(ysteps);

for i=1:ysteps
%% Find A
E = elast(y(i)*L);
B = 1/beta(y(i)*L);
T = tau(y(i)*L);
if i~=1

A(i,i-1) = B/(L^2*dy) + g(i)/(2*E) - dB1dy/(2*L);
end

A(i,i) = -2*B/(L^2*dy) - dy/Mu0 - dy/(E*dt);

if i~=ysteps
A(i,i+1) = B/(L^2*dy) - g(i)/(2*E) + dB1dy/(2*L);

end
b(i) = (T/Mu0 - sig0(i)/(E*dt))*dy;

end

%% Solve A*sig1 = b for sig1
sig1 = (A \ b’)’;

Actin Concentration - act.m

function act = act(o)

act = o;

Elastic Modulus - elast.m

function elast = elast(o)

global elast0

elast = elast0*act(o);

Viscous Drag Coefficient - beta.m

function beta = beta(o)

global beta0
global k_s
global n_f
global psi1
global N_total
global L

48

f1 = psi1 + (1 - psi1)*o/L;
n_b = k_s * N_total / (f1 + k_s);

beta = beta0 * n_b;

Contractile Stress - tau.m

function tau = tau(o)

global tau0
global k_mpos
global k_mneg
global k_regpos
global k_regneg
global M_total
global Reg0
global psi2
global psi1
global N_total
global alph
global n_b0
global k_s
global L

f1 = psi1 + (1 - psi1)*o/L;
n_b = k_s * N_total / (f1 + k_s);
Reg = Reg0*n_b^alph/(n_b0^alph + n_b^alph);
f2 = (psi2 + (1 - psi2)*o/L)^(-1);
Kr = k_regpos/k_regneg;
Km = k_mpos/k_mneg;

c1 = Kr*Reg*f2;
c2 = 1/(Km*act(o)); %inverse of a(x)
m_bpos = M_total*c1/(c1 + 1 + c2);
tau = -tau0*m_bpos;

Steady-State Detection - FindSS.m

function SS = FindSS(t0,t1)

b = load(’Boundaries.txt’);

dt = 1/201; % for implicit with ysteps = 200, dt = dy, L0 = 1

i = t0:t1;
kr = polyfit(i’,b(i,1),1);
kf = polyfit(i’,b(i,2),1);

fprintf(’f(t) = %d * x + %d \nr(t) = %d * x + %d \n’,kf(1)/dt,kf(2),kr(1)/dt,kr(2))

49

Ls0 = b(t0,2) - b(t0,1);
Ls1 = b(t1,2) - b(t1,1);

fprintf(’L(t0) = %d , L(t1) = %d \n \n’,Ls0,Ls1)

Traveling Wave Model One
Driver - driverfcn.m

% Input Parameters (set in SetConstants())
global osteps
global sigw0
global sigw1
global k
global L
global L0
global do
global tsteps

SetConstants()

L = L0;
do = L/(osteps + 1);
fid1 = fopen(’SigmawVals.txt’,’wt’);
fid2 = fopen(’ss.txt’,’wt’);

for t = 1:tsteps

% Printing
fprintf(fid2,’%12.12f %12.12f\n’,k,L);
for j = 1:osteps

fprintf(fid1,’%12.12f ’,sigw0(j));
end
fprintf(fid1,’\n’);

%Solve traveling wave
FindSigmaw()

% Updating values
sigw0 = sigw1;

end
k_scaled = k/.21;
L_scaled = L*.2588;

fclose(fid1);
fclose(fid2);

Setting Constants - SetConstants.m

50

function Set = SetConstants()

s = load(’SigmaVals.txt’);

Constants = textread(’constants.txt’,’%f’,’commentstyle’,’matlab’);
% constants for beta
global beta0
%global k_f
%global k_r0
%global n_s
global N_total
global psi1
global f0
global k_s
beta0 = Constants(1);
k_f = Constants(2);
k_r0 = Constants(3);
n_s = Constants(4);
N_total = Constants(5);
psi1 = Constants(6);
f0 = Constants(7);
k_s = k_f * n_s / k_r0;

% constants for elast
global elast0
elast0 = Constants(8);

% constants for FindSigmaw
global Mu0
Mu0 = Constants(9);

% constants for tau
global alph
global k_mneg
global k_mpos
global k_regneg
global k_regpos
global M_total
global n_b0
global psi2
global Reg0
global tau0
alph = Constants(10);
k_mneg = Constants(11);
k_mpos = Constants(12);
k_regneg = Constants(13);
k_regpos = Constants(14);

51

M_total = Constants(15);
n_b0 = Constants(16);
psi2 = Constants(17);
Reg0 = Constants(18);
tau0 = Constants(19);

% constants for driverfcn
global L0
global osteps
global sigw0
global tsteps
global V0
global Vd
L0 = 1;
osteps = 200;
tsteps = 50;
V0 = 0.1;
Vd = 0.1;

for i = 1:osteps
sigw0(i) = s(5000,i); % Time-dependent Steady State

end

Implicit Traveling Wave Method - FindSigmaw.m

function sigw = FindSigmaw()

global osteps
global sigw0
global sigw1
global L
global k
global do
global Mu0
global V0
global Vd
global L0

% Preliminary Calculations
k = Vd + sigw0(1)/(do*beta(0));
L = V0*L0/(k + sigw0(osteps)/(beta(L)*do));
do = L/(osteps + 1);

A = zeros(osteps);
for i=1:osteps

%% Find A
o = i*do;
if i~=1

52

A(i,i-1) = 1/do^2 - k*beta(o)/(2*elast(o)*do);
end

A(i,i) = -2/do^2 - beta(o)/Mu0;

if i~=osteps
A(i,i+1) = 1/do^2 + k*beta(o)/(2*elast(o)*do);

end
end
%% Find b
for i=1:osteps

b(i) = beta(o)*tau(o)/Mu0;
end

%% Solve A*sig1 = b for sig1
sigw1 = (A \ b’)’;

Note for the traveling wave, E, β, τ are defined constants.

Traveling Wave Model Two
Driver - driverfcn.m

function x = driverfcn(E0i,Gammai)

global actin
global osteps
global sigw0
global sigw1
global k
global L
global L0
global do
global tsteps
global Gamma
global E0
E0 = E0i;
Gamma = Gammai;

SetConstants()
L = L0;
do = L/(osteps + 1);
fid1 = fopen(’SigmawVals.txt’,’wt’);
fid2 = fopen(’ss.txt’,’wt’);
fid3 = fopen(’ActinVals.txt’,’wt’);

for t = 1:tsteps

% Printing k and L
fprintf(fid2,’%16.15f %16.15f\n’,k,L);

53

%Find sigw1
FindSigmaw()

% Printing Sigw0 and actin
for j = 1:osteps

fprintf(fid1,’%16.15f ’,sigw0(j));
fprintf(fid3,’%16.15f ’,actin(j));

end
fprintf(fid1,’\n’);
fprintf(fid3,’\n’);

% Updating values
sigw0 = sigw1;

end

fclose(fid1);
fclose(fid2);
fclose(fid3);

x = [k,L];

Finding Stress Implicitly - FindSigmaw.m

function FindSigmaw()

global osteps
global actin
global sigw0
global sigw1
global L
global k
global do
global Mu0
global tau
global Vd
global L0

%% Preliminary Calculations
k = Vd + (4*sigw0(1) - sigw0(2))/(2*do);
L = L0/(k - (sigw0(osteps-1)-4*sigw0(osteps))/(2*do));
do = L/(osteps + 1);

%% Find actin
FindAct()

%% Find A and b
A = zeros(osteps);

54

b = zeros(1,osteps);
for i=1:osteps

a = 1/actin(i);

if i~=1
A(i,i-1) = 1/do^2 - a*k/(2*do);

end

A(i,i) = -2/do^2 - 1/Mu0;

if i~=osteps
A(i,i+1) = 1/do^2 + a*k/(2*do);

end

b(i) = -tau/Mu0;
end

%% Solve A*sig1 = b for sig1
sigw1 = (A \ b’)’;

Finding Actin Concentration - FindAct.m

function FindAct()

global actin
global osteps
global k
global do
global L0
global Gamma
global L

I = 0;
tmp = zeros(1,osteps);
for j=0:osteps-1

i = osteps+1-j; %count backwards
F = Gamma/(k - sigp(i));% + sigpp(i)/(k-sigp(i)); %integrand
I = I + F*do; %integral
tmp(i-1) = exp(-I)/abs(k-sigp(i-1));

end

actin = L0*tmp/L;

55

